PEMILIHAN FITUR KEPUTUSAN KREDIT BERBASIS MAXIMAL INFORMATION COEFFICIENT (MIC) : SUATU GAGASAN AWAL
Keywords:
Feature selection, Maximal Information Coefficient, Credit decisionAbstract
The need for effective risk management means that banks must begin to look
for continuous improvement in the techniques used for credit analysis by
producing the development and application of various quantitative models. -
payments from consumers and the risk of default. This initial idea will be carried
out using an approach that has never been done in studies related to credit
scoring, where the method of selecting the independent variable Maximal
Information Coefficient (MIC) to get the best credit decision.
References
Altman, E. I. 1968, Financial ratios, discriminant analysis and the prediction of
corporate bankruptcy. The Journal of Finance, 23, 589–609
Amarnath, K.N., 2004., Statistical Methods in Consumer Credit Scoring, Cranes
Software International Ltd. Product Analyst
Ambusaidi, M. A., He, X., Tan, Z., Nanda, P., Lu, L. F., dan Nagar, U. T., 2014.,
A novel feature selection approach for intrusion detection data
classification. Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014 IEEE 13th International Conference
on pp. 82–89.
Baesens B, Van Gestel T, Stepanova M, Van den Poel D, Vanthienen J. Neural
network survival analysis for personal loan data. J Oper Res Soc. 2005;
(9): 1089 – 1098.
Bhuyan, M. H., Bhattacharyya, D. K., dan Kalita, J. K. (2015): Towards
Generating Real-life Datasets for Network Intrusion Detection. IJ Network
Security, 17(6), 683–701.
Bhaduri A., 1997., On the formation of usurious interest rates in backward
agriculture. Camb J Econ. 1977; 1., pp. 341 – 352.
Bramantyo Djohanputro dan Ronny Kountur, 2007, Non Performing Loan
(NPL) Bank Perkreditan Rakyat (BPR), www.profi.or.id
Chandra Dewi, 2009, Faktor – Faktor Yang Mempengaruhi Strategi Pemberian
Kredit Dan Dampaknya Terhadap Non Performing Loan (Studi Kasus
pada Bank Perkreditan Rakyat di Propinsi Jawa Tengah), Tesis Program
Pasca Sarjana Universitas Diponegoro, Semarang (tidak dipublikasikan)
Chang, S., S. D.-o. Kim, & G. Kondo., 2015., Predicting Default Risk of Lending
Club Loans, Machine Learning pp. 1–5.
Chen, Y., Zeng, Y., Luo, F., dan Yuan, Z. 2016., A New Algorithm to Optimize
Maximal Information Coefficient. PloS one, 11(6), e0157567.
Claudia C.C., 2014, Algoritma Klasifikasi Naïve Bayes Untuk Menilai Kelayakan
Kredit, Teknik Informatika Fakutas Ilmu Komputer, Universitas Dian
Nuswantoro, 11 Juli.
Dendawijaya Lukman, 2003, Manajemen Perbankan, Ghalia Indonesia. Jakarta.
Dendy Saputo, 2011, Model Credit Scoring untuk Proses Analisa Kelayakan
Fasilitas Kredit Motor Menggunakan Metode Classification And
Regression Tree (CART) (Studi Kasus PT. X Finance Cabang Masuk
Desember 2010), Skripsi Fakultas Sains dan Teknologi Universitas Islam
Negeri Syarif Hidayatullah, Jakarta
Diego Alonso Gastelum Chavira, Juan Carlos Leyva Lopez, Jesus Jaime Solano
Noriega, Omar Ahumada Valenzuela, Pavel Anselmo Alvarez Carrillo,
, A credit ranking model for a parafinancial company based on the
ELECTRE-III method and a multiobjective evolutionary algorithm
Applied Soft Computing 60 (2017) 190–201
Eliana Angelini, Giacomo di Tollo, Andrea Roli, 2008., A neural network
approach for credit risk evaluation The Quarterly Review of Economics
and Finance 48, pp. 733–755
Frendy dan Isti Sulanjari, 2014., Pembentukan Model Credit Scoring Dengan
Menggunakan Metode Bayesian Network: Stusi Kasus Permohonan
Aplikasi Kredit Pemilikan Rumah (KPR), Fakultas Teknik Industri,
Universitas Indonesia, Jakarta.
Hand DJ, Henley WE. 1997., Statistical Classification Methods in Consumer
Credit Scoring: a Review. J Roy Stat Soc A Sta. 1997; 160: 523 – 541.
Heiat. A. 2011, Modelling Consumer Credit Scoring Through Bayes Network,
World Journal of Social Sciences, Vol. 1, 132 – 141.
Henny Leidiyana., 2013., Penerapan Algoritma K-Nearest Neighbor Untuk
Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor, Jurnal
Penelitian Ilmu Komputer, System Embedded & Logic 1(1)., hal. 65-76
Huang, C.-L. , Chen, M.-C. , & Wang, C.-J. 2007., Credit scoring with a data
mining approach based on support vector machines. Expert Systems with
Applications, 33 , pp. 847–856 .
Jarrow RA., 2011., Credit market equilibrium theory and evidence: Revisiting the
structural versus reduced form credit risk model debate. Financ Res Lett.,
(1)., pp. 2 – 7.
Jonathan N. Crook, David B. Edelman, Lyn C. 2007., Recent developments in
consumer credit risk assessment Thomas, European Journal of Operational
Research 183., pp. 1447–1465.
Lean Yu, Shouyang Wang, Kin Keung Lai, 2008., Credit risk assessment with a
multistage neural network ensemble learning approach, Expert Systems
with Applications 34, pp. 1434–1444
Lee, T. S., Chiu, C. C., Lu, C. J., & Chen, I. F. 2002., Credit scoring using the
hybrid neural discriminant technique. Expert Systems with Application,
(3), pp. 245–254.
Li, S.-T., Shiue, W., & Huang, M.-H., 2006., The Evaluation of consumer loans
using support vector machines. Expert Systems with Applications, 30, pp.
–782.
Kasmir, 2001, Bank Dan Lembaga Keuangan, Edisi Revisi. Penerbitan: PT. Raja
Cerfindo Persada, Jakarta
M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, 2016., Building an intrusion
detection system using a filter-based feature selection algorithm, IEEE
transactions on computers, vol. 65, no. 10, pp. 2986–2998.
M. Doumpos, K. Kosmidou, G. Baourakis, C. Zopounidis, 2002., Credit risk
assessment using a multicriteria hierarchical discrimination approach: A
comparative analysis, European Journal of Operational Research 138, pp.
–412
Matteo Accornero, Giuseppe Cascarino, Roberto Felici, Fabio Parlapiano, Alberto
Maria Sorrentino, 2017., Credit risk in banks ’ exposures to non-financial
firms, Eur Financ Manag, pp. 1 – 17.
Min, J. H. , & Lee, Y.-C., 2005., Bankruptcy prediction using support vector
machine with optimal choice of kernel function parameters. Expert
Systems with Applications, 28, pp. 603–614.
Neto Rosalvo, Paulo Jorge Adeodato, dan Ana Carolina Salgado, 2016, A
Framework for Data Transformation in Credit Behavioral Scoring
Applications Based on Model Driven Development, Journal of Expert
Systems with Applications, November.
Ni Wayan Vany Ekaulandari, A.A.N.B Dwirandra, 2013, Pengaruh Penaksiran
Resiko, Informasi Dan Komunikasi, Aktivitas Pengendalian, Pemantauan,
Lingkungan Pengendalian Pada Efektivitas Sistem Pemberian Kredit, EJurnal
Akuntansi Universitas Udayana 4.3., hal. 585-604
Nie, G., Rowe, W., Zhang, L., Tian, Y., & Shi, Y. 2011., Credit card churn
forecasting by logistic regression and decision tree. Expert Systems with
Applications, 38, pp. 15273–15285 .
Novita Ikasari, 2014, Credit Decision Support Methodology for Micro, Small and
Medium Enterprises (MSMEs): Indonesian Cases, thesis for the Degree of
Doctor of Philosophy of Curtin University, June
Noura Metawa, M. Kabir Hassan, Mohamed Elhoseny, 2017., Genetic algorithm
based model for optimizing bank lending decisions, Expert Systems
With Applications 80., pp. 75–82
Othman, Z. A., Bakar, A. A., dan Etubal, I., 2010., Improving signature detection
classification model using features selection based on customized features.
Intelligent Systems Design and Applications (ISDA), 2010 10th
International Conference on IEEE., pp. 1026–1031).
Putra, S. D., Ahmad, A. S., dan Sutikno, S. 2016., DPA-countermeasure with
knowledge growing system. Electronics and Smart Devices (ISESD),
International Symposium on IEEE pp. 16–20
Pemerintah Republik Indonesia. 1998. Undang-Undang Republik Indonesia
Nomor 10 Tentang Perbankan, Jakarta, Indonesia: Government of
Indonesia.
Qi Zhang, Jue Wang, Aiguo Lu, Shouyang Wang, Jian Ma, An Improved SMO
Algorithm for Financial Credit Risk Assessment–Evidence from China’s
banking, Neurocomputing 2017, doi: 10.1016/j.neucom.2017.07.002
Qinwei Chi, Wenjing Li, 2017., Economic policy uncertainty, credit risks and
banks’ lending decisions: Evidence from Chinese commercial banks,
China Journal of Accounting Research 10., 33–50
Rivai, Veithzal.,&Veithzal, Andria Permata. 2006. Credit Management
Handbook. Jakarta : Raja GrafindoPersada.
Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G.,
Turnbaugh, P. J., Lander, E. S., Mitzenmacher M., Sabeti, P., C. 2011.,
Detecting novel associations in large data sets. science, 334(6062), 1518–
Robynson Amseke, Edi Winarko, 2014, Aplikasi Algoritma CBA untuk Klasifikasi
Resiko Pemberian Kredit (Studi kasus: PT. Telkom CDC Sub Area
Kupang) IJCCS, Vol.8, No.2, July 2014, pp. 121~132
Robert R. Trippi dan Efraim Turban, 1992, Neural Networks in Finance and
Investing: Using Artificial Intelligence to Improve Real World
Performance, McGraw-Hill, Inc. New York, NY, USA
Sumari, A.D.W, 2010., Sistem Berpengetahuan-Tumbuh: Satu Perspektif Baru
Dalam Kecerdasan Tiruan, Disertasi Doktor Teknik Elektro dan Informatika,
Institut Teknologi Bandung, 2010.
Tânia S. H. Gonçalves, Fernando A. F. Ferreira, Marjan S. Jalali & Ieva, Meidutė-
KavaliauskienÄ— 2015., An idiosyncratic decision support system for credit
risk analysis of small and medium-sized enterprises, Technological and
Economic Development of Economy, 02 Nov 2015.
Teguh Wahyono, Ariya Dwika Cahyono, 2015, Pengembangan Model Mitigasi
Resiko Kredit Berbasis Komputasional Untuk Meningkatkan Kemamouan
Manajemen Resiko Bagi Koperasi, Jurnal Sistem Komputer– Vol. 5, No 1,
Mei 2015.
Tom Cronje dan Apriani Atahau, 2017, Bank Lending – Theory and Practice 2e,
McGraw- Hill Education.
Twala, B. 2010., Multiple classifier application to credit risk assessment. Expert
Systems with Applications, 37, 3326–3336.
Yufei Xia, Chuanzhe Liu, YuYing Li, Nana Liu, 2017, A boosted decision tree
approach using Bayesian hyper-parameter optimization for credit
scoring , Expert Systems With Applications 78, 225–241
Zhang, Y. , Jia, H. , Diao, Y. , Hai, M. , & Li, H., 2016, Research on Credit
Scoring by Fusing Social Media Information in Online Peer-to-Peer
Lending. Procedia Computer Science, 91 , 168–174 .
Zhu, Y., Liang, J., Chen, J., dan Ming, Z. (2017): An improved NSGA-III
algorithm for feature selection used in intrusion detection. Knowledge-
Based Systems, 116, 74–85.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Hernawati Pramesti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors can separately make additional contractual arrangements for non-exclusive distribution published by the journal (e.g., publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are allowed and encouraged to send their work via online (e.g., in the institutional repositories or their website) after published by the journal.