PEMILIHAN FITUR KEPUTUSAN KREDIT BERBASIS MAXIMAL INFORMATION COEFFICIENT (MIC) : SUATU GAGASAN AWAL

Authors

  • Hernawati Pramesti Slamet Riyadi University

Keywords:

Feature selection, Maximal Information Coefficient, Credit decision

Abstract

The need for effective risk management means that banks must begin to look
for continuous improvement in the techniques used for credit analysis by
producing the development and application of various quantitative models. -
payments from consumers and the risk of default. This initial idea will be carried
out using an approach that has never been done in studies related to credit
scoring, where the method of selecting the independent variable Maximal
Information Coefficient (MIC) to get the best credit decision.

Author Biography

Hernawati Pramesti, Slamet Riyadi University

You'll when you believe - Man Jadda Wa Jada

References

Altman, E. I. 1968, Financial ratios, discriminant analysis and the prediction of

corporate bankruptcy. The Journal of Finance, 23, 589–609

Amarnath, K.N., 2004., Statistical Methods in Consumer Credit Scoring, Cranes

Software International Ltd. Product Analyst

Ambusaidi, M. A., He, X., Tan, Z., Nanda, P., Lu, L. F., dan Nagar, U. T., 2014.,

A novel feature selection approach for intrusion detection data

classification. Trust, Security and Privacy in Computing and

Communications (TrustCom), 2014 IEEE 13th International Conference

on pp. 82–89.

Baesens B, Van Gestel T, Stepanova M, Van den Poel D, Vanthienen J. Neural

network survival analysis for personal loan data. J Oper Res Soc. 2005;

(9): 1089 – 1098.

Bhuyan, M. H., Bhattacharyya, D. K., dan Kalita, J. K. (2015): Towards

Generating Real-life Datasets for Network Intrusion Detection. IJ Network

Security, 17(6), 683–701.

Bhaduri A., 1997., On the formation of usurious interest rates in backward

agriculture. Camb J Econ. 1977; 1., pp. 341 – 352.

Bramantyo Djohanputro dan Ronny Kountur, 2007, Non Performing Loan

(NPL) Bank Perkreditan Rakyat (BPR), www.profi.or.id

Chandra Dewi, 2009, Faktor – Faktor Yang Mempengaruhi Strategi Pemberian

Kredit Dan Dampaknya Terhadap Non Performing Loan (Studi Kasus

pada Bank Perkreditan Rakyat di Propinsi Jawa Tengah), Tesis Program

Pasca Sarjana Universitas Diponegoro, Semarang (tidak dipublikasikan)

Chang, S., S. D.-o. Kim, & G. Kondo., 2015., Predicting Default Risk of Lending

Club Loans, Machine Learning pp. 1–5.

Chen, Y., Zeng, Y., Luo, F., dan Yuan, Z. 2016., A New Algorithm to Optimize

Maximal Information Coefficient. PloS one, 11(6), e0157567.

Claudia C.C., 2014, Algoritma Klasifikasi Naïve Bayes Untuk Menilai Kelayakan

Kredit, Teknik Informatika Fakutas Ilmu Komputer, Universitas Dian

Nuswantoro, 11 Juli.

Dendawijaya Lukman, 2003, Manajemen Perbankan, Ghalia Indonesia. Jakarta.

Dendy Saputo, 2011, Model Credit Scoring untuk Proses Analisa Kelayakan

Fasilitas Kredit Motor Menggunakan Metode Classification And

Regression Tree (CART) (Studi Kasus PT. X Finance Cabang Masuk

Desember 2010), Skripsi Fakultas Sains dan Teknologi Universitas Islam

Negeri Syarif Hidayatullah, Jakarta

Diego Alonso Gastelum Chavira, Juan Carlos Leyva Lopez, Jesus Jaime Solano

Noriega, Omar Ahumada Valenzuela, Pavel Anselmo Alvarez Carrillo,

, A credit ranking model for a parafinancial company based on the

ELECTRE-III method and a multiobjective evolutionary algorithm

Applied Soft Computing 60 (2017) 190–201

Eliana Angelini, Giacomo di Tollo, Andrea Roli, 2008., A neural network

approach for credit risk evaluation The Quarterly Review of Economics

and Finance 48, pp. 733–755

Frendy dan Isti Sulanjari, 2014., Pembentukan Model Credit Scoring Dengan

Menggunakan Metode Bayesian Network: Stusi Kasus Permohonan

Aplikasi Kredit Pemilikan Rumah (KPR), Fakultas Teknik Industri,

Universitas Indonesia, Jakarta.

Hand DJ, Henley WE. 1997., Statistical Classification Methods in Consumer

Credit Scoring: a Review. J Roy Stat Soc A Sta. 1997; 160: 523 – 541.

Heiat. A. 2011, Modelling Consumer Credit Scoring Through Bayes Network,

World Journal of Social Sciences, Vol. 1, 132 – 141.

Henny Leidiyana., 2013., Penerapan Algoritma K-Nearest Neighbor Untuk

Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor, Jurnal

Penelitian Ilmu Komputer, System Embedded & Logic 1(1)., hal. 65-76

Huang, C.-L. , Chen, M.-C. , & Wang, C.-J. 2007., Credit scoring with a data

mining approach based on support vector machines. Expert Systems with

Applications, 33 , pp. 847–856 .

Jarrow RA., 2011., Credit market equilibrium theory and evidence: Revisiting the

structural versus reduced form credit risk model debate. Financ Res Lett.,

(1)., pp. 2 – 7.

Jonathan N. Crook, David B. Edelman, Lyn C. 2007., Recent developments in

consumer credit risk assessment Thomas, European Journal of Operational

Research 183., pp. 1447–1465.

Lean Yu, Shouyang Wang, Kin Keung Lai, 2008., Credit risk assessment with a

multistage neural network ensemble learning approach, Expert Systems

with Applications 34, pp. 1434–1444

Lee, T. S., Chiu, C. C., Lu, C. J., & Chen, I. F. 2002., Credit scoring using the

hybrid neural discriminant technique. Expert Systems with Application,

(3), pp. 245–254.

Li, S.-T., Shiue, W., & Huang, M.-H., 2006., The Evaluation of consumer loans

using support vector machines. Expert Systems with Applications, 30, pp.

–782.

Kasmir, 2001, Bank Dan Lembaga Keuangan, Edisi Revisi. Penerbitan: PT. Raja

Cerfindo Persada, Jakarta

M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, 2016., Building an intrusion

detection system using a filter-based feature selection algorithm, IEEE

transactions on computers, vol. 65, no. 10, pp. 2986–2998.

M. Doumpos, K. Kosmidou, G. Baourakis, C. Zopounidis, 2002., Credit risk

assessment using a multicriteria hierarchical discrimination approach: A

comparative analysis, European Journal of Operational Research 138, pp.

–412

Matteo Accornero, Giuseppe Cascarino, Roberto Felici, Fabio Parlapiano, Alberto

Maria Sorrentino, 2017., Credit risk in banks ’ exposures to non-financial

firms, Eur Financ Manag, pp. 1 – 17.

Min, J. H. , & Lee, Y.-C., 2005., Bankruptcy prediction using support vector

machine with optimal choice of kernel function parameters. Expert

Systems with Applications, 28, pp. 603–614.

Neto Rosalvo, Paulo Jorge Adeodato, dan Ana Carolina Salgado, 2016, A

Framework for Data Transformation in Credit Behavioral Scoring

Applications Based on Model Driven Development, Journal of Expert

Systems with Applications, November.

Ni Wayan Vany Ekaulandari, A.A.N.B Dwirandra, 2013, Pengaruh Penaksiran

Resiko, Informasi Dan Komunikasi, Aktivitas Pengendalian, Pemantauan,

Lingkungan Pengendalian Pada Efektivitas Sistem Pemberian Kredit, EJurnal

Akuntansi Universitas Udayana 4.3., hal. 585-604

Nie, G., Rowe, W., Zhang, L., Tian, Y., & Shi, Y. 2011., Credit card churn

forecasting by logistic regression and decision tree. Expert Systems with

Applications, 38, pp. 15273–15285 .

Novita Ikasari, 2014, Credit Decision Support Methodology for Micro, Small and

Medium Enterprises (MSMEs): Indonesian Cases, thesis for the Degree of

Doctor of Philosophy of Curtin University, June

Noura Metawa, M. Kabir Hassan, Mohamed Elhoseny, 2017., Genetic algorithm

based model for optimizing bank lending decisions, Expert Systems

With Applications 80., pp. 75–82

Othman, Z. A., Bakar, A. A., dan Etubal, I., 2010., Improving signature detection

classification model using features selection based on customized features.

Intelligent Systems Design and Applications (ISDA), 2010 10th

International Conference on IEEE., pp. 1026–1031).

Putra, S. D., Ahmad, A. S., dan Sutikno, S. 2016., DPA-countermeasure with

knowledge growing system. Electronics and Smart Devices (ISESD),

International Symposium on IEEE pp. 16–20

Pemerintah Republik Indonesia. 1998. Undang-Undang Republik Indonesia

Nomor 10 Tentang Perbankan, Jakarta, Indonesia: Government of

Indonesia.

Qi Zhang, Jue Wang, Aiguo Lu, Shouyang Wang, Jian Ma, An Improved SMO

Algorithm for Financial Credit Risk Assessment–Evidence from China’s

banking, Neurocomputing 2017, doi: 10.1016/j.neucom.2017.07.002

Qinwei Chi, Wenjing Li, 2017., Economic policy uncertainty, credit risks and

banks’ lending decisions: Evidence from Chinese commercial banks,

China Journal of Accounting Research 10., 33–50

Rivai, Veithzal.,&Veithzal, Andria Permata. 2006. Credit Management

Handbook. Jakarta : Raja GrafindoPersada.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G.,

Turnbaugh, P. J., Lander, E. S., Mitzenmacher M., Sabeti, P., C. 2011.,

Detecting novel associations in large data sets. science, 334(6062), 1518–

Robynson Amseke, Edi Winarko, 2014, Aplikasi Algoritma CBA untuk Klasifikasi

Resiko Pemberian Kredit (Studi kasus: PT. Telkom CDC Sub Area

Kupang) IJCCS, Vol.8, No.2, July 2014, pp. 121~132

Robert R. Trippi dan Efraim Turban, 1992, Neural Networks in Finance and

Investing: Using Artificial Intelligence to Improve Real World

Performance, McGraw-Hill, Inc. New York, NY, USA

Sumari, A.D.W, 2010., Sistem Berpengetahuan-Tumbuh: Satu Perspektif Baru

Dalam Kecerdasan Tiruan, Disertasi Doktor Teknik Elektro dan Informatika,

Institut Teknologi Bandung, 2010.

Tânia S. H. Gonçalves, Fernando A. F. Ferreira, Marjan S. Jalali & Ieva, Meidutė-

KavaliauskienÄ— 2015., An idiosyncratic decision support system for credit

risk analysis of small and medium-sized enterprises, Technological and

Economic Development of Economy, 02 Nov 2015.

Teguh Wahyono, Ariya Dwika Cahyono, 2015, Pengembangan Model Mitigasi

Resiko Kredit Berbasis Komputasional Untuk Meningkatkan Kemamouan

Manajemen Resiko Bagi Koperasi, Jurnal Sistem Komputer– Vol. 5, No 1,

Mei 2015.

Tom Cronje dan Apriani Atahau, 2017, Bank Lending – Theory and Practice 2e,

McGraw- Hill Education.

Twala, B. 2010., Multiple classifier application to credit risk assessment. Expert

Systems with Applications, 37, 3326–3336.

Yufei Xia, Chuanzhe Liu, YuYing Li, Nana Liu, 2017, A boosted decision tree

approach using Bayesian hyper-parameter optimization for credit

scoring , Expert Systems With Applications 78, 225–241

Zhang, Y. , Jia, H. , Diao, Y. , Hai, M. , & Li, H., 2016, Research on Credit

Scoring by Fusing Social Media Information in Online Peer-to-Peer

Lending. Procedia Computer Science, 91 , 168–174 .

Zhu, Y., Liang, J., Chen, J., dan Ming, Z. (2017): An improved NSGA-III

algorithm for feature selection used in intrusion detection. Knowledge-

Based Systems, 116, 74–85.

Downloads

Published

2022-08-16